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Data Transmission

▪ All data transmission systems in their most basic form have a 

sending device at one end and a receiving device at the other.



Wired vs. Wireless Communication



Parallel Communication

▪ In parallel communication, where many bits are sent at the same time.



Serial Communication

▪ Serial communication is simply a way to transfer data. 

▪ The data will be sent sequentially, one bit at a time.



UART Protocol

▪ UART means “Universal Asynchronous Receiver Transmitter”.

▪ UART represents the hardware circuitry (module) being used for the 

serial communication. 

▪ UART is sold/shipped as a standalone integrated circuit (IC) or as an 

internal module within microcontrollers. 

▪ The UART protocol allows you to communicate between 2 boards.

▪ When you use serial communication between PC and Arduino, 

you’re using the UART protocol. 



UART Protocol: Baud Rate

▪ The baud rate specifies how fast the data is sent over the bus and it is 

specified in bits-per-second or bps.

▪ You can actually choose any speed for the baud rate. 

▪ However, there are specific values that are known as industry standards.

▪ The most common and widely-used standardized value is 9600.

Serial.begin(9600);

▪ In the serial port context, “9600 baud” means that the serial port is capable 

of transferring a maximum of 9600 bits per second.

▪ Other standard baud rates include: 1200, 2400, 4800, 19200, 38400, 

57600 and 115200. 



UART Protocol: Transmitter and Receiver

UART1 UART2

▪ When device A wants to transmit data to device B, it will share data via its 

transmitter’s pin and device B receiver will receive the sent data.



UART Protocol: Transmitter and Receiver

UART1 UART2

▪ In UART communication, both transmitter and receiver must agree on the 

exact same baud rate for a successful data transmission.



UART Protocol: Data Packet

Start Bit

(1 Bit)

Data Bits

(5 to 9 Bits)

Parity Bit

(0 to 1 Bit)

Stop Bits 

(1 to 2 Bits)

▪ The data being transmitted/received in UART serial communication is 

organized into specific blocks called packets.

▪ UART packets usually start with “start bit” which is a logic LOW and is 

used to signal the receiver that there is a new coming packet.

▪ Data bits are the actual data bits being transmitted to receiver.

▪ Parity bit allows the receiver to check the correctness of the received data.

▪ Stop bits are used to signal the end of the data packet being sent. 



DHT11: Temperature and Humidity Sensor

▪ The DHT11 sensor measures humidity and temperature values serially 

over a single wire.

▪ It sends a 40-bit data stream containing both temperature and humidity.

8-bit integral RH

8-bit decimal RH

8-bit integral Temp

8-bit decimal Temp

8-bit check sum



DHT11: Specifications

Criteria Description

Operating Voltage 3.3V to 5.5V

Communication Serial

Output Signal Digital

Temperature Range 0°C to 50°C

Temperature Accuracy ±2°C

Humidity Range 20% to 90%

Humidity Accuracy ±5%

Refresh Rate ~ 2 seconds



DHT11: Pinout

VCC GNDS



DHT11: Installing Library

▪ Go to Tools → Manage Libraries.



DHT11: Installing Library

▪ Search DHT sensor library by Adafruit, and install it.



DHT11: Installing Library

▪ Click Install all, if this message appears.



DHT11: Hardware Components

▪ NodeMCU ESP8266

▪ DHT11 Sensor

▪ Jumpers

▪ Breadboard 



DHT11: NodeMCU ESP8266 Pinout

PIN GPIO Why Not Safe?

D0 GPIO16
HIGH at boot

Used to wake up from deep sleep

D1 GPIO5 -

D2 GPIO4 -

D3 GPIO0
Connected to FLASH button

Boot fails if  pulled LOW

D4 GPIO2
HIGH at boot

Boot fails if  pulled LOW

D5 GPIO14 -

D6 GPIO12 -

D7 GPIO13 -

D8 GPIO15
Required for boot

Boot fails if  pulled HIGH



DHT11: Circuit



DHT11: Steps

1. Connect breadboard power (+) and ground (-) rails to NodeMCU 

VIN and ground (GND), respectively.



DHT11: Steps

2. Plug the DHT11 sensor into the breadboard.



DHT11: Steps

3. The sensor GND pin connects to the ground on NodeMCU.



DHT11: Steps

4. The sensor Power pin connects to the VCC on NodeMCU.



DHT11: Steps

5. Wire up the sensor Data pin to the analog pin D5 on NodeMCU.



DHT11: Code

#include "DHT.h"                    // Import DHT library
#define DHT_PIN D5                   // Digital pin connected to the DHT sensor
DHT dht(DHT_PIN, DHT11);                // Initialize DHT sensor

void setup() {
 Serial.begin(9600);                  // Start serial monitor
 dht.begin();                     // Start DHT sensor
}

void loop() {
 delay(2000);                     // Wait a few seconds between measurements

 float h = dht.readHumidity();             // Read humidity
 float t = dht.readTemperature();           // Read temperature as Celsius

 // Check if any reads failed (to try later)
 if (isnan(h) || isnan(t)) {
  Serial.println("Failed to read from DHT sensor.");
  return;
 }

 // Print temperature
 Serial.print("Temperature: ");
 Serial.print(t);
 Serial.print("°C ");

 // Print humidity
 Serial.print("Humidity: ");
 Serial.print(h);
 Serial.println("%");
}



NodeMCU & Python Serial Communication



NodeMCU & Python Serial Communication

▪ The objective of this part is to establish a serial connection between a 

Python program and an Arduino/NodeMCU/ESP-32 program.

▪ In the Python program, we will use the PySerial module to be able to 

establish the serial connection. 

▪ The easiest way to install PySerial is by using pip.

>> pip install pyserial

▪ We will need to know the port and the value of baud rate, to be used later 

in the Python program.



NodeMCU & Python Serial Communication



NodeMCU & Python Serial Communication: Installing PySerial

▪ To establish a serial connection between a Python program and an 

NodeMCU program, you can use the PySerial library, which allows 

communication with serial ports. 

>> pip install pyserial



NodeMCU & Python Serial Communication: Circuit



NodeMCU & Python Serial Communication: NodeMCU Program

#include "DHT.h"                    // Import DHT library
#define DHT_PIN D5                   // Digital pin connected to the DHT sensor
DHT dht(DHT_PIN, DHT11);                // Initialize DHT sensor

void setup() {
 Serial.begin(9600);                  // Start serial monitor
 dht.begin();                     // Start DHT sensor
}

void loop() {
 delay(2000);                     // Wait a few seconds between measurements

 float h = dht.readHumidity();             // Read humidity
 float t = dht.readTemperature();           // Read temperature as Celsius

 // Check if any reads failed (to try later)
 if (isnan(h) || isnan(t)) {
  Serial.println("Failed to read from DHT sensor.");
  return;
 }

 // Print temperature
 Serial.print("Temperature: ");
 Serial.print(t);
 Serial.print("°C ");

 // Print humidity
 Serial.print("Humidity: ");
 Serial.print(h);
 Serial.println("%");
}



NodeMCU & Python Serial Communication: Python Program

# Import the PySerial library for serial communication
import serial

# Initialize serial communication
ser = serial.Serial('COM5', 9600)

try:
  while True:
    # Check if there is data available in the input buffer
    if ser.in_waiting > 0:
      # Read all bytes until a newline character is detected
      line = ser.readline()
      
      # Decode the bytes into a UTF-8 string
      line = line.decode('utf-8', errors='ignore')
      
      # Remove whitespaces from the beginning and the end
      line = line.strip()
      
      # Print data
      print(line)

except:
  # Close the serial connection
  ser.close()
  print("Serial connection closed.")



NodeMCU & Python Serial Communication: Output



Python & NodeMCU Serial Communication



Python & NodeMCU Serial Communication: Circuit



Python & NodeMCU Serial Communication: Python Program

# Import the PySerial library for serial communication
import serial

# Initialize serial communication
ser = serial.Serial('COM5', 9600)

try:
  while True:

    # Get command from the user

    cmd = input('Enter the command: ')
    
    # Send command to NodeMCU
    ser.write(cmd.encode())

except:
  # Close the serial connection
  ser.close()
  print("Serial connection closed.")



Python & NodeMCU Serial Communication: NodeMCU Program

#define LED_PIN D6            // Define LED pin

void setup() {

 Serial.begin(9600);           // Start serial monitor

 pinMode(LED_PIN, OUTPUT);        // Initialize the pin D6 as an output

}

void loop() {

 // Read the incoming byte if available

 if(Serial.available()){         // Check if there is a message available

  char cmd = Serial.read();       // Read the incoming byte

  if(cmd == '1')            // If command is '1'

   digitalWrite(LED_PIN, HIGH);    // Turn on LED

  else if(cmd == '0')          // If command is '0'

   digitalWrite(LED_PIN, LOW);     // Turn off LED

 }

}



Voice-Controlled Lamp



Voice-Controlled Lamp: Installing SpeechRecognition 

▪ To convert speech to text in Python, you can use SpeechRecognition 

library, which provides an interface to various speech recognition engines.

>> pip install SpeechRecognition



Voice-Controlled Lamp: Installing PyAudio 

▪ The SpeechRecognition library relies on PyAudio library.

>> pip install pyaudio



Voice-Controlled Lamp: Python Program

import serial
import speech_recognition as sr

ser = serial.Serial('COM5', 9600)        # Initialize serial communication
recognizer = sr.Recognizer()          # Initialize the recognizer

try:
  while True:
    try:
      # Capture audio from the microphone for 2 seconds
      with sr.Microphone() as source:
        print("Say something.")
        audio = recognizer.listen(source, phrase_time_limit=2)
        
      # Use Google Web Speech API to recognize the speech
      print('Processing voice ...')
      text = recognizer.recognize_google(audio, language='ar-EG')
      print(f'You said: {text}')
      
      # Send command to NodeMCU
      if text == 'نور اللمبه':
        ser.write('1'.encode())
      elif text == 'اطفي اللمبه':
        ser.write('0'.encode())
    except sr.UnknownValueError:
      print("Google Web Speech API could not understand audio.")
    except sr.RequestError:
      print("Could not request results from Google Web Speech API.")
    finally:
      repeat = input('\nRepeat? ')

except:
  ser.close()
  print("Serial connection closed.")



Voice-Controlled Lamp: NodeMCU Program

#define LED_PIN D6            // Define LED pin

void setup() {

 Serial.begin(9600);           // Start serial monitor

 pinMode(LED_PIN, OUTPUT);        // Initialize the pin D6 as an output

}

void loop() {

 // Read the incoming byte if available

 if(Serial.available()){         // Check if there is a message available

  char cmd = Serial.read();       // Read the incoming byte

  if(cmd == '1')            // If command is '1'

   digitalWrite(LED_PIN, HIGH);    // Turn on LED

  else if(cmd == '0')          // If command is '0'

   digitalWrite(LED_PIN, LOW);     // Turn off LED

 }

}



References and Tutorials

▪ DHT11 Sensor Interfacing with NodeMCU

▪ Interfacing of  DHT11 Sensor With ESP8266 nodemcu

▪ DHT11 Temperature & Humidity sensor on NodeMCU

▪ Interface DHT11 DHT22 with NodeMCU Using Web Server

▪ ESP8266 DHT11/DHT22 Temperature and Humidity Web Server

▪ pySerial Documentation

▪ ESP32 / ESP8266 Arduino: Serial communication with Python

▪ Raspberry Pi Arduino Serial Communication

▪ The Ultimate Guide To Speech Recognition With Python

▪ A Guide to Speech Recognition in Python

https://www.electronicwings.com/nodemcu/dht11-sensor-interfacing-with-nodemcu
https://techatronic.com/interfacing-of-dht11-sensor-with-esp8266-nodemcu/
https://roboindia.com/tutorials/dht11-nodemcu-arduino/
https://lastminuteengineers.com/esp8266-dht11-dht22-web-server-tutorial/
https://randomnerdtutorials.com/esp8266-dht11dht22-temperature-and-humidity-web-server-with-arduino-ide/
https://pyserial.readthedocs.io/en/latest/
https://techtutorialsx.com/2017/12/02/esp32-esp8266-arduino-serial-communication-with-python/
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
https://realpython.com/python-speech-recognition/
https://www.simplilearn.com/tutorials/python-tutorial/speech-recognition-in-python
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