
Internet of Things

IoT Team, BFCAI

Python & NodeMCU

Serial Communication

Data Transmission

▪ All data transmission systems in their most basic form have a

sending device at one end and a receiving device at the other.

Wired vs. Wireless Communication

Parallel Communication

▪ In parallel communication, where many bits are sent at the same time.

Serial Communication

▪ Serial communication is simply a way to transfer data.

▪ The data will be sent sequentially, one bit at a time.

UART Protocol

▪ UART means “Universal Asynchronous Receiver Transmitter”.

▪ UART represents the hardware circuitry (module) being used for the

serial communication.

▪ UART is sold/shipped as a standalone integrated circuit (IC) or as an

internal module within microcontrollers.

▪ The UART protocol allows you to communicate between 2 boards.

▪ When you use serial communication between PC and Arduino,

you’re using the UART protocol.

UART Protocol: Baud Rate

▪ The baud rate specifies how fast the data is sent over the bus and it is

specified in bits-per-second or bps.

▪ You can actually choose any speed for the baud rate.

▪ However, there are specific values that are known as industry standards.

▪ The most common and widely-used standardized value is 9600.

Serial.begin(9600);

▪ In the serial port context, “9600 baud” means that the serial port is capable

of transferring a maximum of 9600 bits per second.

▪ Other standard baud rates include: 1200, 2400, 4800, 19200, 38400,

57600 and 115200.

UART Protocol: Transmitter and Receiver

UART1 UART2

▪ When device A wants to transmit data to device B, it will share data via its

transmitter’s pin and device B receiver will receive the sent data.

UART Protocol: Transmitter and Receiver

UART1 UART2

▪ In UART communication, both transmitter and receiver must agree on the

exact same baud rate for a successful data transmission.

UART Protocol: Data Packet

Start Bit

(1 Bit)

Data Bits

(5 to 9 Bits)

Parity Bit

(0 to 1 Bit)

Stop Bits

(1 to 2 Bits)

▪ The data being transmitted/received in UART serial communication is

organized into specific blocks called packets.

▪ UART packets usually start with “start bit” which is a logic LOW and is

used to signal the receiver that there is a new coming packet.

▪ Data bits are the actual data bits being transmitted to receiver.

▪ Parity bit allows the receiver to check the correctness of the received data.

▪ Stop bits are used to signal the end of the data packet being sent.

DHT11: Temperature and Humidity Sensor

▪ The DHT11 sensor measures humidity and temperature values serially

over a single wire.

▪ It sends a 40-bit data stream containing both temperature and humidity.

8-bit integral RH

8-bit decimal RH

8-bit integral Temp

8-bit decimal Temp

8-bit check sum

DHT11: Specifications

Criteria Description

Operating Voltage 3.3V to 5.5V

Communication Serial

Output Signal Digital

Temperature Range 0°C to 50°C

Temperature Accuracy ±2°C

Humidity Range 20% to 90%

Humidity Accuracy ±5%

Refresh Rate ~ 2 seconds

DHT11: Pinout

VCC GNDS

DHT11: Installing Library

▪ Go to Tools → Manage Libraries.

DHT11: Installing Library

▪ Search DHT sensor library by Adafruit, and install it.

DHT11: Installing Library

▪ Click Install all, if this message appears.

DHT11: Hardware Components

▪ NodeMCU ESP8266

▪ DHT11 Sensor

▪ Jumpers

▪ Breadboard

DHT11: NodeMCU ESP8266 Pinout

PIN GPIO Why Not Safe?

D0 GPIO16
HIGH at boot

Used to wake up from deep sleep

D1 GPIO5 -

D2 GPIO4 -

D3 GPIO0
Connected to FLASH button

Boot fails if pulled LOW

D4 GPIO2
HIGH at boot

Boot fails if pulled LOW

D5 GPIO14 -

D6 GPIO12 -

D7 GPIO13 -

D8 GPIO15
Required for boot

Boot fails if pulled HIGH

DHT11: Circuit

DHT11: Steps

1. Connect breadboard power (+) and ground (-) rails to NodeMCU

VIN and ground (GND), respectively.

DHT11: Steps

2. Plug the DHT11 sensor into the breadboard.

DHT11: Steps

3. The sensor GND pin connects to the ground on NodeMCU.

DHT11: Steps

4. The sensor Power pin connects to the VCC on NodeMCU.

DHT11: Steps

5. Wire up the sensor Data pin to the analog pin D5 on NodeMCU.

DHT11: Code

#include "DHT.h" // Import DHT library
#define DHT_PIN D5 // Digital pin connected to the DHT sensor
DHT dht(DHT_PIN, DHT11); // Initialize DHT sensor

void setup() {
 Serial.begin(9600); // Start serial monitor
 dht.begin(); // Start DHT sensor
}

void loop() {
 delay(2000); // Wait a few seconds between measurements

 float h = dht.readHumidity(); // Read humidity
 float t = dht.readTemperature(); // Read temperature as Celsius

 // Check if any reads failed (to try later)
 if (isnan(h) || isnan(t)) {
 Serial.println("Failed to read from DHT sensor.");
 return;
 }

 // Print temperature
 Serial.print("Temperature: ");
 Serial.print(t);
 Serial.print("°C ");

 // Print humidity
 Serial.print("Humidity: ");
 Serial.print(h);
 Serial.println("%");
}

NodeMCU & Python Serial Communication

NodeMCU & Python Serial Communication

▪ The objective of this part is to establish a serial connection between a

Python program and an Arduino/NodeMCU/ESP-32 program.

▪ In the Python program, we will use the PySerial module to be able to

establish the serial connection.

▪ The easiest way to install PySerial is by using pip.

>> pip install pyserial

▪ We will need to know the port and the value of baud rate, to be used later

in the Python program.

NodeMCU & Python Serial Communication

NodeMCU & Python Serial Communication: Installing PySerial

▪ To establish a serial connection between a Python program and an

NodeMCU program, you can use the PySerial library, which allows

communication with serial ports.

>> pip install pyserial

NodeMCU & Python Serial Communication: Circuit

NodeMCU & Python Serial Communication: NodeMCU Program

#include "DHT.h" // Import DHT library
#define DHT_PIN D5 // Digital pin connected to the DHT sensor
DHT dht(DHT_PIN, DHT11); // Initialize DHT sensor

void setup() {
 Serial.begin(9600); // Start serial monitor
 dht.begin(); // Start DHT sensor
}

void loop() {
 delay(2000); // Wait a few seconds between measurements

 float h = dht.readHumidity(); // Read humidity
 float t = dht.readTemperature(); // Read temperature as Celsius

 // Check if any reads failed (to try later)
 if (isnan(h) || isnan(t)) {
 Serial.println("Failed to read from DHT sensor.");
 return;
 }

 // Print temperature
 Serial.print("Temperature: ");
 Serial.print(t);
 Serial.print("°C ");

 // Print humidity
 Serial.print("Humidity: ");
 Serial.print(h);
 Serial.println("%");
}

NodeMCU & Python Serial Communication: Python Program

Import the PySerial library for serial communication
import serial

Initialize serial communication
ser = serial.Serial('COM5', 9600)

try:
 while True:
 # Check if there is data available in the input buffer
 if ser.in_waiting > 0:
 # Read all bytes until a newline character is detected
 line = ser.readline()

 # Decode the bytes into a UTF-8 string
 line = line.decode('utf-8', errors='ignore')

 # Remove whitespaces from the beginning and the end
 line = line.strip()

 # Print data
 print(line)

except:
 # Close the serial connection
 ser.close()
 print("Serial connection closed.")

NodeMCU & Python Serial Communication: Output

Python & NodeMCU Serial Communication

Python & NodeMCU Serial Communication: Circuit

Python & NodeMCU Serial Communication: Python Program

Import the PySerial library for serial communication
import serial

Initialize serial communication
ser = serial.Serial('COM5', 9600)

try:
 while True:

 # Get command from the user

 cmd = input('Enter the command: ')

 # Send command to NodeMCU
 ser.write(cmd.encode())

except:
 # Close the serial connection
 ser.close()
 print("Serial connection closed.")

Python & NodeMCU Serial Communication: NodeMCU Program

#define LED_PIN D6 // Define LED pin

void setup() {

 Serial.begin(9600); // Start serial monitor

 pinMode(LED_PIN, OUTPUT); // Initialize the pin D6 as an output

}

void loop() {

 // Read the incoming byte if available

 if(Serial.available()){ // Check if there is a message available

 char cmd = Serial.read(); // Read the incoming byte

 if(cmd == '1') // If command is '1'

 digitalWrite(LED_PIN, HIGH); // Turn on LED

 else if(cmd == '0') // If command is '0'

 digitalWrite(LED_PIN, LOW); // Turn off LED

 }

}

Voice-Controlled Lamp

Voice-Controlled Lamp: Installing SpeechRecognition

▪ To convert speech to text in Python, you can use SpeechRecognition

library, which provides an interface to various speech recognition engines.

>> pip install SpeechRecognition

Voice-Controlled Lamp: Installing PyAudio

▪ The SpeechRecognition library relies on PyAudio library.

>> pip install pyaudio

Voice-Controlled Lamp: Python Program

import serial
import speech_recognition as sr

ser = serial.Serial('COM5', 9600) # Initialize serial communication
recognizer = sr.Recognizer() # Initialize the recognizer

try:
 while True:
 try:
 # Capture audio from the microphone for 2 seconds
 with sr.Microphone() as source:
 print("Say something.")
 audio = recognizer.listen(source, phrase_time_limit=2)

 # Use Google Web Speech API to recognize the speech
 print('Processing voice ...')
 text = recognizer.recognize_google(audio, language='ar-EG')
 print(f'You said: {text}')

 # Send command to NodeMCU
 if text == 'نور اللمبه':
 ser.write('1'.encode())
 elif text == 'اطفي اللمبه':
 ser.write('0'.encode())
 except sr.UnknownValueError:
 print("Google Web Speech API could not understand audio.")
 except sr.RequestError:
 print("Could not request results from Google Web Speech API.")
 finally:
 repeat = input('\nRepeat? ')

except:
 ser.close()
 print("Serial connection closed.")

Voice-Controlled Lamp: NodeMCU Program

#define LED_PIN D6 // Define LED pin

void setup() {

 Serial.begin(9600); // Start serial monitor

 pinMode(LED_PIN, OUTPUT); // Initialize the pin D6 as an output

}

void loop() {

 // Read the incoming byte if available

 if(Serial.available()){ // Check if there is a message available

 char cmd = Serial.read(); // Read the incoming byte

 if(cmd == '1') // If command is '1'

 digitalWrite(LED_PIN, HIGH); // Turn on LED

 else if(cmd == '0') // If command is '0'

 digitalWrite(LED_PIN, LOW); // Turn off LED

 }

}

References and Tutorials

▪ DHT11 Sensor Interfacing with NodeMCU

▪ Interfacing of DHT11 Sensor With ESP8266 nodemcu

▪ DHT11 Temperature & Humidity sensor on NodeMCU

▪ Interface DHT11 DHT22 with NodeMCU Using Web Server

▪ ESP8266 DHT11/DHT22 Temperature and Humidity Web Server

▪ pySerial Documentation

▪ ESP32 / ESP8266 Arduino: Serial communication with Python

▪ Raspberry Pi Arduino Serial Communication

▪ The Ultimate Guide To Speech Recognition With Python

▪ A Guide to Speech Recognition in Python

https://www.electronicwings.com/nodemcu/dht11-sensor-interfacing-with-nodemcu
https://techatronic.com/interfacing-of-dht11-sensor-with-esp8266-nodemcu/
https://roboindia.com/tutorials/dht11-nodemcu-arduino/
https://lastminuteengineers.com/esp8266-dht11-dht22-web-server-tutorial/
https://randomnerdtutorials.com/esp8266-dht11dht22-temperature-and-humidity-web-server-with-arduino-ide/
https://pyserial.readthedocs.io/en/latest/
https://techtutorialsx.com/2017/12/02/esp32-esp8266-arduino-serial-communication-with-python/
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
https://realpython.com/python-speech-recognition/
https://www.simplilearn.com/tutorials/python-tutorial/speech-recognition-in-python

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

